torch_geometric.datasets.BA2MotifDataset
- class BA2MotifDataset(root: str, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, force_reload: bool = False)[source]
Bases:
InMemoryDataset用于评估可解释性算法的合成BA-2motifs图分类数据集,如“Parameterized Explainer for Graph Neural Network”论文中所述。
BA2MotifDataset包含1000个随机的Barabasi-Albert(BA)图。 其中一半的图附加了一个HouseMotif,其余的图附加了一个五节点的CycleMotif。 根据附加的motif类型,这些图被分配到两个类别中的一个。该数据集是从官方实现中预先计算得出的。如果你想创建自己的变体,可以使用
ExplainerDataset:import torch from torch_geometric.datasets import ExplainerDataset from torch_geometric.datasets.graph_generator import BAGraph from torch_geometric.datasets.motif_generator import HouseMotif from torch_geometric.datasets.motif_generator import CycleMotif dataset1 = ExplainerDataset( graph_generator=BAGraph(num_nodes=25, num_edges=1), motif_generator=HouseMotif(), num_motifs=1, num_graphs=500, ) dataset2 = ExplainerDataset( graph_generator=BAGraph(num_nodes=25, num_edges=1), motif_generator=CycleMotif(5), num_motifs=1, num_graphs=500, ) dataset = torch.utils.data.ConcatDataset([dataset1, dataset2])
- Parameters:
root (str) – Root directory where the dataset should be saved.
transform (callable, optional) – A function/transform that takes in an
torch_geometric.data.Dataobject and returns a transformed version. The data object will be transformed before every access. (default:None)pre_transform (callable, optional) – A function/transform that takes in an
torch_geometric.data.Dataobject and returns a transformed version. The data object will be transformed before being saved to disk. (default:None)force_reload (bool, optional) – Whether to re-process the dataset. (default:
False)
统计:
#图表
#节点
#edges
#特性
#classes
1000
25
~51.0
10
2