torch_geometric.datasets.BA2MotifDataset

class BA2MotifDataset(root: str, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, force_reload: bool = False)[source]

Bases: InMemoryDataset

用于评估可解释性算法的合成BA-2motifs图分类数据集,如“Parameterized Explainer for Graph Neural Network”论文中所述。 BA2MotifDataset包含1000个随机的Barabasi-Albert(BA)图。 其中一半的图附加了一个HouseMotif,其余的图附加了一个五节点的CycleMotif。 根据附加的motif类型,这些图被分配到两个类别中的一个。

该数据集是从官方实现中预先计算得出的。如果你想创建自己的变体,可以使用ExplainerDataset

import torch
from torch_geometric.datasets import ExplainerDataset
from torch_geometric.datasets.graph_generator import BAGraph
from torch_geometric.datasets.motif_generator import HouseMotif
from torch_geometric.datasets.motif_generator import CycleMotif

dataset1 = ExplainerDataset(
    graph_generator=BAGraph(num_nodes=25, num_edges=1),
    motif_generator=HouseMotif(),
    num_motifs=1,
    num_graphs=500,
)

dataset2 = ExplainerDataset(
    graph_generator=BAGraph(num_nodes=25, num_edges=1),
    motif_generator=CycleMotif(5),
    num_motifs=1,
    num_graphs=500,
)

dataset = torch.utils.data.ConcatDataset([dataset1, dataset2])
Parameters:
  • root (str) – Root directory where the dataset should be saved.

  • transform (callable, optional) – A function/transform that takes in an torch_geometric.data.Data object and returns a transformed version. The data object will be transformed before every access. (default: None)

  • pre_transform (callable, optional) – A function/transform that takes in an torch_geometric.data.Data object and returns a transformed version. The data object will be transformed before being saved to disk. (default: None)

  • force_reload (bool, optional) – Whether to re-process the dataset. (default: False)

统计:

#图表

#节点

#edges

#特性

#classes

1000

25

~51.0

10

2