torch_geometric.datasets.CoMA

class CoMA(root: str, train: bool = True, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None, force_reload: bool = False)[source]

Bases: InMemoryDataset

CoMA 3D 面部数据集来自“使用卷积网格自动编码器生成3D面部”论文,包含12个不同对象捕捉的20,466个极端表情的网格。

注意

Data objects hold mesh faces instead of edge indices. To convert the mesh to a graph, use the torch_geometric.transforms.FaceToEdge as pre_transform. To convert the mesh to a point cloud, use the torch_geometric.transforms.SamplePoints as transform to sample a fixed number of points on the mesh faces according to their face area.

Parameters:
  • root (str) – Root directory where the dataset should be saved.

  • train (bool, optional) – If True, loads the training dataset, otherwise the test dataset. (default: True)

  • transform (callable, optional) – A function/transform that takes in an torch_geometric.data.Data object and returns a transformed version. The data object will be transformed before every access. (default: None)

  • pre_transform (callable, optional) – A function/transform that takes in an torch_geometric.data.Data object and returns a transformed version. The data object will be transformed before being saved to disk. (default: None)

  • pre_filter (callable, optional) – A function that takes in an torch_geometric.data.Data object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default: None)

  • force_reload (bool, optional) – Whether to re-process the dataset. (default: False)

统计:

#图表

#节点

#edges

#特性

#classes

20,465

5,023

29,990

3

12