torch_geometric.datasets.CoMA
- class CoMA(root: str, train: bool = True, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None, force_reload: bool = False)[source]
Bases:
InMemoryDatasetCoMA 3D 面部数据集来自“使用卷积网格自动编码器生成3D面部”论文,包含12个不同对象捕捉的20,466个极端表情的网格。
注意
Data objects hold mesh faces instead of edge indices. To convert the mesh to a graph, use the
torch_geometric.transforms.FaceToEdgeaspre_transform. To convert the mesh to a point cloud, use thetorch_geometric.transforms.SamplePointsastransformto sample a fixed number of points on the mesh faces according to their face area.- Parameters:
root (str) – Root directory where the dataset should be saved.
train (bool, optional) – If
True, loads the training dataset, otherwise the test dataset. (default:True)transform (callable, optional) – A function/transform that takes in an
torch_geometric.data.Dataobject and returns a transformed version. The data object will be transformed before every access. (default:None)pre_transform (callable, optional) – A function/transform that takes in an
torch_geometric.data.Dataobject and returns a transformed version. The data object will be transformed before being saved to disk. (default:None)pre_filter (callable, optional) – A function that takes in an
torch_geometric.data.Dataobject and returns a boolean value, indicating whether the data object should be included in the final dataset. (default:None)force_reload (bool, optional) – Whether to re-process the dataset. (default:
False)
统计:
#图表
#节点
#edges
#特性
#classes
20,465
5,023
29,990
3
12