torch_geometric.nn.aggr.Aggregation
- class Aggregation[source]
Bases:
Module用于实现自定义聚合的抽象基类。
聚合可以通过一个
index向量来执行,该向量定义了从输入元素到它们在输出中位置的映射:值得注意的是,
index不需要排序(对于大多数聚合操作符):# Feature matrix holding 10 elements with 64 features each: x = torch.randn(10, 64) # Assign each element to one of three sets: index = torch.tensor([0, 0, 1, 0, 2, 0, 2, 1, 0, 2]) output = aggr(x, index) # Output shape: [3, 64]
或者,可以通过一个称为
ptr的“压缩”索引向量来实现聚合。在这里,同一集合中的元素需要在输入中分组在一起,而ptr定义了它们的边界:# Feature matrix holding 10 elements with 64 features each: x = torch.randn(10, 64) # Define the boundary indices for three sets: ptr = torch.tensor([0, 4, 7, 10]) output = aggr(x, ptr=ptr) # Output shape: [3, 64]
请注意,至少需要定义
index或ptr中的一个。- Shapes:
输入: 节点特征 \((*, |\mathcal{V}|, F_{in})\) 或边特征 \((*, |\mathcal{E}|, F_{in})\), 索引向量 \((|\mathcal{V}|)\) 或 \((|\mathcal{E}|)\),
输出: 图特征 \((*, |\mathcal{G}|, F_{out})\) 或 节点特征 \((*, |\mathcal{V}|, F_{out})\)
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2, max_num_elements: Optional[int] = None) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements (
Optional[int], default:None) – (int, optional): The maximum number of elements within a single aggregation group. (default:None)
- Return type: