torch_geometric.nn.conv.PANConv
- class PANConv(in_channels: int, out_channels: int, filter_size: int, **kwargs)[source]
Bases:
MessagePassing基于路径积分的卷积算子来自 “Path Integral Based Convolution and Pooling for Graph Neural Networks” 论文。
\[\mathbf{X}^{\prime} = \mathbf{M} \mathbf{X} \mathbf{W}\]其中 \(\mathbf{M}\) 表示归一化并学习的最大熵转移(MET)矩阵,该矩阵包括最多
filter_size跳的邻居:\[\mathbf{M} = \mathbf{Z}^{-1/2} \sum_{n=0}^L e^{-\frac{E(n)}{T}} \mathbf{A}^n \mathbf{Z}^{-1/2}\]- Parameters:
in_channels (int) – Size of each input sample, or
-1to derive the size from the first input(s) to the forward method.out_channels (int) – Size of each output sample.
filter_size (int) – 过滤器大小 \(L\)。
**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing.
- Shapes:
输入: 节点特征 \((|\mathcal{V}|, F_{in})\), 边索引 \((2, |\mathcal{E}|)\),
output: node features \((|\mathcal{V}|, F_{out})\)