torch_geometric.nn.conv.SplineConv
- class SplineConv(in_channels: Union[int, Tuple[int, int]], out_channels: int, dim: int, kernel_size: Union[int, List[int]], is_open_spline: bool = True, degree: int = 1, aggr: str = 'mean', root_weight: bool = True, bias: bool = True, **kwargs)[source]
Bases:
MessagePassing基于样条的卷积算子来自“SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels”论文。
\[\mathbf{x}^{\prime}_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \cdot h_{\mathbf{\Theta}}(\mathbf{e}_{i,j}),\]其中 \(h_{\mathbf{\Theta}}\) 表示定义在加权B样条张量积基上的核函数。
注意
伪坐标必须位于固定区间 \([0, 1]\) 内,以便此方法按预期工作。
- Parameters:
in_channels (int or tuple) – Size of each input sample, or
-1to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.out_channels (int) – Size of each output sample.
dim (int) – 伪坐标维度。
is_open_spline (bool 或 [bool], 可选) – 如果设置为
False,操作符将在此维度中使用闭合的B样条基。 (默认True)degree (int, optional) – B样条基函数的度数。(默认值:
1)aggr (str, optional) – The aggregation scheme to use (
"add","mean","max"). (default:"mean")root_weight (bool, optional) – If set to
False, the layer will not add transformed root node features to the output. (default:True)bias (bool, optional) – If set to
False, the layer will not learn an additive bias. (default:True)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing.