多模态推理(视觉语言模型)
TensorZero Gateway 支持视觉语言模型(VLMs)的多模态推理(例如图像输入)。
查看集成获取支持的模型列表。
设置
对象存储
TensorZero利用对象存储来存储多模态推理过程中使用的图像。它支持任何兼容S3的对象存储服务,包括AWS S3、GCP云存储、Cloudflare R2等多种服务。您可以在配置文件的object_storage
部分配置对象存储服务。
在本示例中,我们将使用MinIO的本地部署,这是一个兼容S3协议的开源对象存储服务。
[object_storage]type = "s3_compatible"endpoint = "http://minio:9000" # optional: defaults to AWS S3# region = "us-east-1" # optional: depends on your S3-compatible storage providerbucket_name = "tensorzero" # optional: depends on your S3-compatible storage provider# IMPORTANT: for production environments, remove the following setting and use a secure method of authentication in# combination with a production-grade object storage service.allow_http = true
您也可以将图像存储在本地目录中(type = "filesystem"
)或禁用图像存储功能(type = "disabled"
)。
详情请参阅配置参考。
TensorZero网关将按以下优先级顺序尝试从以下资源获取凭据:
S3_ACCESS_KEY_ID
和S3_SECRET_ACCESS_KEY
环境变量AWS_ACCESS_KEY_ID
和AWS_SECRET_ACCESS_KEY
环境变量- AWS SDK 的默认凭证配置
Docker Compose
我们将使用Docker Compose来部署TensorZero Gateway、ClickHouse和MinIO。
docker-compose.yml
# This is a simplified example for learning purposes. Do not use this in production.# For production-ready deployments, see: https://www.tensorzero.com/docs/gateway/deployment
services: clickhouse: image: clickhouse/clickhouse-server:24.12-alpine environment: - CLICKHOUSE_USER=chuser - CLICKHOUSE_DEFAULT_ACCESS_MANAGEMENT=1 - CLICKHOUSE_PASSWORD=chpassword ports: - "8123:8123" healthcheck: test: wget --spider --tries 1 http://chuser:chpassword@clickhouse:8123/ping start_period: 30s start_interval: 1s timeout: 1s
gateway: image: tensorzero/gateway volumes: # Mount our tensorzero.toml file into the container - ./config:/app/config:ro command: --config-file /app/config/tensorzero.toml environment: - OPENAI_API_KEY=${OPENAI_API_KEY:?Environment variable OPENAI_API_KEY must be set.} - S3_ACCESS_KEY_ID=miniouser - S3_SECRET_ACCESS_KEY=miniopassword - TENSORZERO_CLICKHOUSE_URL=http://chuser:chpassword@clickhouse:8123/tensorzero ports: - "3000:3000" extra_hosts: - "host.docker.internal:host-gateway" depends_on: clickhouse: condition: service_healthy minio: condition: service_healthy
# For a production deployment, you can use AWS S3, GCP Cloud Storage, Cloudflare R2, etc. minio: image: bitnami/minio ports: - "9000:9000" # API port - "9001:9001" # Console port environment: - MINIO_ROOT_USER=miniouser - MINIO_ROOT_PASSWORD=miniopassword - MINIO_DEFAULT_BUCKETS=tensorzero healthcheck: test: "mc ls local/tensorzero || exit 1" start_period: 30s start_interval: 1s timeout: 1s
推理
完成设置后,您现在可以使用TensorZero Gateway进行多模态推理。
TensorZero网关支持接收嵌入式图像(以base64字符串编码)和远程图像(通过URL指定)。
from tensorzero import TensorZeroGateway
with TensorZeroGateway.build_http( gateway_url="http://localhost:3000",) as client: response = client.inference( model_name="openai::gpt-4o-mini", input={ "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Do the images share any common features?", }, # Remote image of Ferris the crab { "type": "image", "url": "https://raw.githubusercontent.com/tensorzero/tensorzero/ff3e17bbd3e32f483b027cf81b54404788c90dc1/tensorzero-internal/tests/e2e/providers/ferris.png", }, # One-pixel orange image encoded as a base64 string { "type": "image", "mime_type": "image/png", "data": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAAAXNSR0IArs4c6QAAAA1JREFUGFdj+O/P8B8ABe0CTsv8mHgAAAAASUVORK5CYII=", }, ], } ], }, )
print(response)
from openai import OpenAI
with OpenAI(base_url="http://localhost:3000/openai/v1") as client: response = client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "user", "content": [ { "type": "text", "text": "Do the images share any common features?", }, # Remote image of Ferris the crab { "type": "image_url", "image_url": { "url": "https://raw.githubusercontent.com/tensorzero/tensorzero/ff3e17bbd3e32f483b027cf81b54404788c90dc1/tensorzero-internal/tests/e2e/providers/ferris.png", }, }, # One-pixel orange image encoded as a base64 string { "type": "image_url", "image_url": { "url": "", }, }, ], } ], )
print(response)
curl -X POST http://localhost:3000/inference \ -H "Content-Type: application/json" \ -d '{ "model_name": "openai::gpt-4o-mini", "input": { "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Do the images share any common features?" }, { "type": "image", "url": "https://raw.githubusercontent.com/tensorzero/tensorzero/ff3e17bbd3e32f483b027cf81b54404788c90dc1/tensorzero-internal/tests/e2e/providers/ferris.png" }, { "type": "image", "mime_type": "image/png", "data": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAAAXNSR0IArs4c6QAAAA1JREFUGFdj+O/P8B8ABe0CTsv8mHgAAAAASUVORK5CYII=" } ] } ] } }'