跳至内容

GCP Vertex AI Anthropic 入门指南

本指南展示如何设置一个最小化部署,以便通过GCP Vertex AI Anthropic使用TensorZero网关。

设置

对于这个最小化配置,您的项目目录中只需要两个文件:

  • Directoryconfig/
    • tensorzero.toml
  • docker-compose.yml

关于生产环境部署,请参阅我们的部署指南

配置

创建一个最小化的配置文件,定义模型和一个简单的聊天功能:

config/tensorzero.toml
[models.claude_3_haiku_20240307]
routing = ["gcp_vertex_anthropic"]
[models.claude_3_haiku_20240307.providers.gcp_vertex_anthropic]
type = "gcp_vertex_anthropic"
model_id = "claude-3-haiku@20240307"
location = "us-central1"
project_id = "your-project-id" # change this
[functions.my_function_name]
type = "chat"
[functions.my_function_name.variants.my_variant_name]
type = "chat_completion"
model = "claude_3_haiku_20240307"

查看GCP Vertex AI Anthropic上可用的模型列表

Credentials

您需要生成一个JWT格式的GCP服务账号密钥(说明见此处),并在GCP_VERTEX_CREDENTIALS_PATH环境变量中指定其路径。

您可以通过将credential_location设置为env::YOUR_ENVIRONMENT_VARIABLE来自定义凭证存储位置。 更多信息请参阅凭证管理指南和配置参考

部署 (Docker Compose)

创建一个最小化的Docker Compose配置:

docker-compose.yml
# This is a simplified example for learning purposes. Do not use this in production.
# For production-ready deployments, see: https://www.tensorzero.com/docs/gateway/deployment
services:
gateway:
image: tensorzero/gateway
volumes:
- ./config:/app/config:ro
- ${GCP_VERTEX_CREDENTIALS_PATH:-/dev/null}:/app/gcp-credentials.json:ro
command: --config-file /app/config/tensorzero.toml
environment:
- GCP_VERTEX_CREDENTIALS_PATH=${GCP_VERTEX_CREDENTIALS_PATH:+/app/gcp-credentials.json}
ports:
- "3000:3000"
extra_hosts:
- "host.docker.internal:host-gateway"

您可以通过docker compose up命令启动网关。

推理

向网关发起推理请求:

终端窗口
curl -X POST http://localhost:3000/inference \
-H "Content-Type: application/json" \
-d '{
"function_name": "my_function_name",
"input": {
"messages": [
{
"role": "user",
"content": "What is the capital of Japan?"
}
]
}
}'