GCP Vertex AI Anthropic 入门指南
本指南展示如何设置一个最小化部署,以便通过GCP Vertex AI Anthropic使用TensorZero网关。
设置
对于这个最小化配置,您的项目目录中只需要两个文件:
Directoryconfig/
- tensorzero.toml
- docker-compose.yml
关于生产环境部署,请参阅我们的部署指南。
配置
创建一个最小化的配置文件,定义模型和一个简单的聊天功能:
[models.claude_3_haiku_20240307]routing = ["gcp_vertex_anthropic"]
[models.claude_3_haiku_20240307.providers.gcp_vertex_anthropic]type = "gcp_vertex_anthropic"model_id = "claude-3-haiku@20240307"location = "us-central1"project_id = "your-project-id" # change this
[functions.my_function_name]type = "chat"
[functions.my_function_name.variants.my_variant_name]type = "chat_completion"model = "claude_3_haiku_20240307"查看GCP Vertex AI Anthropic上可用的模型列表。
Credentials
您需要生成一个JWT格式的GCP服务账号密钥(说明见此处),并在GCP_VERTEX_CREDENTIALS_PATH环境变量中指定其路径。
您可以通过将credential_location设置为env::YOUR_ENVIRONMENT_VARIABLE来自定义凭证存储位置。
更多信息请参阅凭证管理指南和配置参考。
部署 (Docker Compose)
创建一个最小化的Docker Compose配置:
# This is a simplified example for learning purposes. Do not use this in production.# For production-ready deployments, see: https://www.tensorzero.com/docs/gateway/deployment
services: gateway: image: tensorzero/gateway volumes: - ./config:/app/config:ro - ${GCP_VERTEX_CREDENTIALS_PATH:-/dev/null}:/app/gcp-credentials.json:ro command: --config-file /app/config/tensorzero.toml environment: - GCP_VERTEX_CREDENTIALS_PATH=${GCP_VERTEX_CREDENTIALS_PATH:+/app/gcp-credentials.json} ports: - "3000:3000" extra_hosts: - "host.docker.internal:host-gateway"您可以通过docker compose up命令启动网关。
推理
向网关发起推理请求:
curl -X POST http://localhost:3000/inference \ -H "Content-Type: application/json" \ -d '{ "function_name": "my_function_name", "input": { "messages": [ { "role": "user", "content": "What is the capital of Japan?" } ] } }'