亚马逊共同购买计算机数据集
- class dgl.data.AmazonCoBuyComputerDataset(raw_dir=None, force_reload=False, verbose=False, transform=None)[source]
Bases:
GNNBenchmarkDataset
AmazonCoBuy 数据集中用于节点分类任务的“计算机”部分。
Amazon Computers 和 Amazon Photo 是 Amazon 共同购买图 [McAuley et al., 2015] 的一部分, 其中节点代表商品,边表示两种商品经常一起购买,节点特征是词袋编码的产品评论,类别标签由产品类别给出。
Reference: https://github.com/shchur/gnn-benchmark#datasets
统计:
节点数:13,752
边数:491,722(请注意,原始数据集有245,778条边,但DGL添加了反向边并去除了重复边,因此数量不同)
班级数量:10
节点特征大小:767
- Parameters:
raw_dir (str) – Raw file directory to download/contains the input data directory. Default: ~/.dgl/
force_reload (bool) – Whether to reload the dataset. Default: False
verbose (bool) – Whether to print out progress information. Default: True.
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access.
示例
>>> data = AmazonCoBuyComputerDataset() >>> g = data[0] >>> num_class = data.num_classes >>> feat = g.ndata['feat'] # get node feature >>> label = g.ndata['label'] # get node labels
- __getitem__(idx)
通过索引获取图表
- Parameters:
idx (int) – Item index
- Returns:
The graph contains:
ndata['feat']
: node featuresndata['label']
: node labels
- Return type:
- __len__()
数据集中的图表数量