问题数据集
- class dgl.data.QuestionsDataset(raw_dir=None, force_reload=False, verbose=True, transform=None)[source]
Bases:
HeterophilousGraphDataset
来自论文《A Critical Look at the Evaluation of GNNs under Heterophily: Are We Really Making Progress? <https://arxiv.org/abs/2302.11640>》的问题数据集。
该数据集基于问答网站Yandex Q的数据。节点代表用户,如果一位用户回答了另一位用户的问题,则两个节点之间会有一条边连接。任务是预测哪些用户在网站上保持活跃(未被删除或封禁)。节点特征是用户描述中词语的词嵌入的平均值。没有描述的用户由一个单独的二进制特征表示。
统计:
节点数: 48921
边数:307080
类别:2
节点特征:301
10 个训练/验证/测试分割
- Parameters:
raw_dir (str, optional) – Raw file directory to store the processed data. Default: ~/.dgl/
force_reload (bool, optional) – Whether to re-download the data source. Default: False
verbose (bool, optional) – Whether to print progress information. Default: True
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access. Default: None
示例
>>> from dgl.data import QuestionsDataset >>> dataset = QuestionsDataset() >>> g = dataset[0] >>> num_classes = dataset.num_classes
>>> # get node features >>> feat = g.ndata["feat"]
>>> # get the first data split >>> train_mask = g.ndata["train_mask"][:, 0] >>> val_mask = g.ndata["val_mask"][:, 0] >>> test_mask = g.ndata["test_mask"][:, 0]
>>> # get labels >>> label = g.ndata['label']
- __getitem__(idx)
获取索引处的数据对象。
- __len__()
数据集中的示例数量。