CiteseerGraphDataset

class dgl.data.CiteseerGraphDataset(raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None, reorder=False)[source]

Bases: CitationGraphDataset

Citeseer 引用网络数据集。

节点代表科学出版物,边代表引用关系。每个节点都有一个预定义的3703维特征。该数据集设计用于节点分类任务。任务是预测特定出版物的类别。

统计:

  • 节点数:3327

  • 边数: 9228

  • 班级数量:6

  • 标签分割:

    • 训练:120

    • 有效: 500

    • 测试: 1000

Parameters:
  • raw_dir (str) – Raw file directory to download/contains the input data directory. Default: ~/.dgl/

  • force_reload (bool) – Whether to reload the dataset. Default: False

  • verbose (bool) – Whether to print out progress information. Default: True.

  • reverse_edge (bool) – Whether to add reverse edges in graph. Default: True.

  • transform (callable, optional) – A transform that takes in a DGLGraph object and returns a transformed version. The DGLGraph object will be transformed before every access.

  • reorder (bool) – Whether to reorder the graph using reorder_graph(). Default: False.

num_classes

标签类别数量

Type:

int

注释

节点特征是行归一化的。

在citeseer数据集中,图中存在一些孤立的节点。 这些孤立的节点被作为零向量添加到正确的位置。

示例

>>> dataset = CiteseerGraphDataset()
>>> g = dataset[0]
>>> num_class = dataset.num_classes
>>>
>>> # get node feature
>>> feat = g.ndata['feat']
>>>
>>> # get data split
>>> train_mask = g.ndata['train_mask']
>>> val_mask = g.ndata['val_mask']
>>> test_mask = g.ndata['test_mask']
>>>
>>> # get labels
>>> label = g.ndata['label']
__getitem__(idx)[source]

获取图形对象

Parameters:

idx (int) – 项目索引,CiteseerGraphDataset 只有一个图对象

Returns:

graph structure, node features and labels.

  • ndata['train_mask']: mask for training node set

  • ndata['val_mask']: mask for validation node set

  • ndata['test_mask']: mask for test node set

  • ndata['feat']: node feature

  • ndata['label']: ground truth labels

Return type:

dgl.DGLGraph

__len__()[source]

数据集中图的数量。