康奈尔数据集
- class dgl.data.CornellDataset(raw_dir=None, force_reload=False, verbose=True, transform=None)[source]
Bases:
GeomGCNDataset
康奈尔子集 WebKB, 后来由Geom-GCN: Geometric Graph Convolutional Networks修改
节点代表网页。边代表它们之间的超链接。节点特征是网页的词袋表示。这些网页被手动分类为五个类别:学生、项目、课程、员工和教职员工。
统计:
节点数:183
边数: 298
班级数量:5
10 个训练/验证/测试分割
训练:87
值: 59
测试: 37
- Parameters:
raw_dir (str, optional) – Raw file directory to store the processed data. Default: ~/.dgl/
force_reload (bool, optional) – Whether to re-download the data source. Default: False
verbose (bool, optional) – Whether to print progress information. Default: True
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access. Default: None
注释
该图不包含双向的边。
示例
>>> from dgl.data import CornellDataset >>> dataset = CornellDataset() >>> g = dataset[0] >>> num_classes = dataset.num_classes
>>> # get node features >>> feat = g.ndata["feat"]
>>> # get data split >>> train_mask = g.ndata["train_mask"] >>> val_mask = g.ndata["val_mask"] >>> test_mask = g.ndata["test_mask"]
>>> # get labels >>> label = g.ndata['label']
- __getitem__(idx)
获取索引处的数据对象。
- __len__()
数据集中的示例数量。