扫雷数据集

class dgl.data.MinesweeperDataset(raw_dir=None, force_reload=False, verbose=True, transform=None)[source]

基础类:HeterophilousGraphDataset

来自论文《A Critical Look at the Evaluation of GNNs under Heterophily: Are We Really Making Progress? <https://arxiv.org/abs/2302.11640>》的扫雷数据集。

该数据集灵感来源于扫雷游戏。图是一个规则的100x100网格,其中每个节点(单元格)与八个相邻节点相连(除了位于网格边缘的节点,它们的邻居较少)。20%的节点被随机选为地雷。任务是预测哪些节点是地雷。节点特征是相邻地雷数量的独热编码。然而,对于随机选择的50%的节点,特征是未知的,这由一个单独的二值特征表示。

统计:

  • 节点数:10000

  • 边数: 78804

  • 类别:2

  • 节点特征:7

  • 10 个训练/验证/测试分割

Parameters:
  • raw_dir (str, optional) – Raw file directory to store the processed data. Default: ~/.dgl/

  • force_reload (bool, optional) – Whether to re-download the data source. Default: False

  • verbose (bool, optional) – Whether to print progress information. Default: True

  • transform (callable, optional) – A transform that takes in a DGLGraph object and returns a transformed version. The DGLGraph object will be transformed before every access. Default: None

num_classes

节点类的数量

Type:

int

示例

>>> from dgl.data import MinesweeperDataset
>>> dataset = MinesweeperDataset()
>>> g = dataset[0]
>>> num_classes = dataset.num_classes
>>> # get node features
>>> feat = g.ndata["feat"]
>>> # get the first data split
>>> train_mask = g.ndata["train_mask"][:, 0]
>>> val_mask = g.ndata["val_mask"][:, 0]
>>> test_mask = g.ndata["test_mask"][:, 0]
>>> # get labels
>>> label = g.ndata['label']
__getitem__(idx)

获取索引处的数据对象。

__len__()

数据集中的示例数量。