torch_geometric.nn.aggr.SortAggregation
- class SortAggregation(k: int)[source]
Bases:
Aggregation来自“An End-to-End Deep Learning Architecture for Graph Classification”论文的池化操作符, 其中节点特征根据它们的最后一个特征通道按降序排序。前\(k\)个节点形成该层的输出。
注意
SortAggregation需要排序的索引index作为输入。 具体来说,如果你将此聚合作为MessagePassing的一部分使用,请确保edge_index按目标节点排序,可以通过手动 使用sort_edge_index()排序边索引 或调用torch_geometric.data.Data.sort()来实现。- Parameters:
k (int) – 每个图要保留的节点数。
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2, max_num_elements: Optional[int] = None) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements (
Optional[int], default:None) – (int, optional): The maximum number of elements within a single aggregation group. (default:None)
- Return type: