torch_geometric.nn.models.NeuralFingerprint

class NeuralFingerprint(in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, **kwargs)[source]

Bases: Module

来自“Convolutional Networks on Graphs for Learning Molecular Fingerprints”论文的神经指纹模型,用于生成分子的指纹。

Parameters:
  • in_channels (int) – Size of each input sample.

  • hidden_channels (int) – Size of each hidden sample.

  • out_channels (int) – 每个输出指纹的大小。

  • num_layers (int) – 层数。

  • **kwargs (可选) – torch_geometric.nn.conv.MFConv 的额外参数。

forward(x: Tensor, edge_index: Union[Tensor, SparseTensor], batch: Optional[Tensor] = None, batch_size: Optional[int] = None) Tensor[source]
Return type:

Tensor

reset_parameters()[source]

重置模块的所有可学习参数。