speechbrain.k2_integration.losses 模块
该文件包含用于k2训练的损失函数。目前,我们仅支持CTC损失。
- Authors:
皮埃尔·冠军 2023
赵泽宇 2023
乔治奥斯·卡拉卡西迪斯 2023
摘要
函数:
使用k2实现的CTC损失。 |
参考
- speechbrain.k2_integration.losses.ctc_k2(log_probs, input_lens, graph_compiler, texts, reduction='mean', beam_size=10, use_double_scores=True, is_training=True)[source]
使用k2实现的CTC损失。请确保k2已正确安装。 请注意,在此实现中,空白索引必须为0。
- Parameters:
log_probs (torch.Tensor) – 形状为 (batch, time, num_classes) 的对数概率。
input_lens (torch.Tensor) – 每个话语的长度。
graph_compiler (k2.Fsa) – 解码图。
文本 (列表[str]) – 文本列表。
reduction (str) – 应用于输出的缩减方式。'mean'、'sum'、'none'。 参见 k2.ctc_loss 中的 'mean'、'sum'、'none'。
beam_size (int) – 束大小。
use_double_scores (bool) – 如果为真,则使用双精度分数。
is_training (bool) – 如果为真,返回的损失需要梯度。
- Returns:
loss – CTC损失。
- Return type:
torch.Tensor
Example
>>> import torch >>> from speechbrain.k2_integration.losses import ctc_k2 >>> from speechbrain.k2_integration.graph_compiler import CtcGraphCompiler >>> from speechbrain.k2_integration.lexicon import Lexicon >>> from speechbrain.k2_integration.prepare_lang import prepare_lang
>>> # Create a random batch of log-probs >>> batch_size = 4
>>> log_probs = torch.randn(batch_size, 100, 30) >>> log_probs.requires_grad = True >>> # Assume all utterances have the same length so no padding was needed. >>> input_lens = torch.ones(batch_size) >>> # Create a small lexicon containing only two words and write it to a file. >>> lang_tmpdir = getfixture('tmpdir') >>> lexicon_sample = "hello h e l l o\nworld w o r l d\n<UNK> <unk>" >>> lexicon_file = lang_tmpdir.join("lexicon.txt") >>> lexicon_file.write(lexicon_sample) >>> # Create a lang directory with the lexicon and L.pt, L_inv.pt, L_disambig.pt >>> prepare_lang(lang_tmpdir) >>> # Create a lexicon object >>> lexicon = Lexicon(lang_tmpdir) >>> # Create a random decoding graph >>> graph = CtcGraphCompiler( ... lexicon, ... log_probs.device, ... ) >>> # Create a random batch of texts >>> texts = ["hello world", "world hello", "hello", "world"] >>> # Compute the loss >>> loss = ctc_k2( ... log_probs=log_probs, ... input_lens=input_lens, ... graph_compiler=graph, ... texts=texts, ... reduction="mean", ... beam_size=10, ... use_double_scores=True, ... is_training=True, ... )