speechbrain.utils.EDER 模块
计算情感分割错误率(EDER),它是未检测到情感(ME)、误报(FA)和混淆(CF)的总和。
- Authors
王英志 2023
摘要
函数:
计算EDER值 |
|
将重叠的语音均匀分配到具有不同情绪的相邻片段中。 |
|
获取两个区间的重叠长度 |
|
如果段重叠,则返回True。 |
|
如果相邻的子段具有相同的情感,则合并它们。 |
|
将引用更改为列表的列表 |
参考
- speechbrain.utils.EDER.EDER(prediction, id, duration, emotion, window_length, stride)[source]
计算EDER值
- Parameters:
- Returns:
浮点数
- Return type:
计算出的语句的EDER
Example
>>> from speechbrain.utils.EDER import EDER >>> prediction=['n', 'n', 'n', 'a', 'a', 'a'] >>> id="spk1_1" >>> duration=1.22 >>> emotion=[{'emo': 'angry', 'start': 0.39, 'end': 1.10}] >>> window_length = 0.2 >>> stride = 0.2 >>> EDER(prediction, id, duration, emotion, window_length, stride) 0.2704918032786885
- speechbrain.utils.EDER.getOverlap(a, b)[source]
获取两个区间的重叠长度
Example
>>> from speechbrain.utils.EDER import getOverlap >>> interval1=[1.2, 3.4] >>> interval2=[2.3, 4.5] >>> getOverlap(interval1, interval2) 1.1
- speechbrain.utils.EDER.is_overlapped(end1, start2)[source]
如果段重叠,则返回True。
- Parameters:
- Returns:
overlapped – 如果段重叠则为True,否则为False。
- Return type:
Example
>>> from speechbrain.processing import diarization as diar >>> diar.is_overlapped(5.5, 3.4) True >>> diar.is_overlapped(5.5, 6.4) False
- speechbrain.utils.EDER.merge_ssegs_same_emotion_adjacent(lol)[source]
如果相邻的子段具有相同的情感,则将它们合并。
- Parameters:
lol (list 的 list) – 每个列表包含 [utt_id, sseg_start, sseg_end, emo_label]。
- Returns:
new_lol – new_lol 包含从相同情感ID合并的相邻片段。
- Return type:
Example
>>> from speechbrain.utils.EDER import merge_ssegs_same_emotion_adjacent >>> lol=[['u1', 0.0, 7.0, 'a'], ... ['u1', 7.0, 9.0, 'a'], ... ['u1', 9.0, 11.0, 'n'], ... ['u1', 11.0, 13.0, 'n'], ... ['u1', 13.0, 15.0, 'n'], ... ['u1', 15.0, 16.0, 'a']] >>> merge_ssegs_same_emotion_adjacent(lol) [['u1', 0.0, 9.0, 'a'], ['u1', 9.0, 15.0, 'n'], ['u1', 15.0, 16.0, 'a']]
- speechbrain.utils.EDER.reference_to_lol(id, duration, emotion)[source]
将引用更改为列表的列表
- Parameters:
- Returns:
lol – 每个列表结构为 [rec_id, sseg_start, sseg_end, spkr_id]。
- Return type:
Example
>>> from speechbrain.utils.EDER import reference_to_lol >>> id="u1" >>> duration=8.0 >>> emotion=[{'emo': 'angry', 'start': 1.016, 'end': 6.336}] >>> reference_to_lol(id, duration, emotion) [['u1', 0, 1.016, 'n'], ['u1', 1.016, 6.336, 'a'], ['u1', 6.336, 8.0, 'n']]
- speechbrain.utils.EDER.distribute_overlap(lol)[source]
将重叠的语音均匀分布在具有不同情绪的相邻片段中。
- Parameters:
lol (list of list) – 每个列表结构为 [rec_id, sseg_start, sseg_end, spkr_id]。
- Returns:
new_lol – 它包含了在不同情感ID的相邻段之间平均分配的重叠部分。
- Return type:
Example
>>> from speechbrain.processing import diarization as diar >>> lol = [['r1', 5.5, 9.0, 's1'], ... ['r1', 8.0, 11.0, 's2'], ... ['r1', 11.5, 13.0, 's2'], ... ['r1', 12.0, 15.0, 's1']] >>> diar.distribute_overlap(lol) [['r1', 5.5, 8.5, 's1'], ['r1', 8.5, 11.0, 's2'], ['r1', 11.5, 12.5, 's2'], ['r1', 12.5, 15.0, 's1']]