speechbrain.utils.EDER 模块

计算情感分割错误率(EDER),它是未检测到情感(ME)、误报(FA)和混淆(CF)的总和。

Authors
  • 王英志 2023

摘要

函数:

EDER

计算EDER值

distribute_overlap

将重叠的语音均匀分配到具有不同情绪的相邻片段中。

getOverlap

获取两个区间的重叠长度

is_overlapped

如果段重叠,则返回True。

merge_ssegs_same_emotion_adjacent

如果相邻的子段具有相同的情感,则合并它们。

reference_to_lol

将引用更改为列表的列表

参考

speechbrain.utils.EDER.EDER(prediction, id, duration, emotion, window_length, stride)[source]

计算EDER值

Parameters:
  • 预测 (列表) – 话语的逐帧预测列表

  • id (str) – 话语的id

  • duration (float) – 话语的持续时间

  • emotion (list of dicts) – 真实情感及其持续时间, 例如:[{‘emo’: ‘angry’, ‘start’: 1.016, ‘end’: 6.336}]

  • window_length (float) – 用于帧预测的帧长度

  • stride (float) – 用于逐帧预测的帧长度

Returns:

浮点数

Return type:

计算出的语句的EDER

Example

>>> from speechbrain.utils.EDER import EDER
>>> prediction=['n', 'n', 'n', 'a', 'a', 'a']
>>> id="spk1_1"
>>> duration=1.22
>>> emotion=[{'emo': 'angry', 'start': 0.39, 'end': 1.10}]
>>> window_length = 0.2
>>> stride = 0.2
>>> EDER(prediction, id, duration, emotion, window_length, stride)
0.2704918032786885
speechbrain.utils.EDER.getOverlap(a, b)[source]

获取两个区间的重叠长度

Parameters:
Returns:

浮点数

Return type:

重叠长度

Example

>>> from speechbrain.utils.EDER import getOverlap
>>> interval1=[1.2, 3.4]
>>> interval2=[2.3, 4.5]
>>> getOverlap(interval1, interval2)
1.1
speechbrain.utils.EDER.is_overlapped(end1, start2)[source]

如果段重叠,则返回True。

Parameters:
  • end1 (float) – 第一个片段的结束时间。

  • start2 (float) – 第二段的开始时间。

Returns:

overlapped – 如果段重叠则为True,否则为False。

Return type:

bool

Example

>>> from speechbrain.processing import diarization as diar
>>> diar.is_overlapped(5.5, 3.4)
True
>>> diar.is_overlapped(5.5, 6.4)
False
speechbrain.utils.EDER.merge_ssegs_same_emotion_adjacent(lol)[source]

如果相邻的子段具有相同的情感,则将它们合并。

Parameters:

lol (listlist) – 每个列表包含 [utt_id, sseg_start, sseg_end, emo_label]。

Returns:

new_lol – new_lol 包含从相同情感ID合并的相邻片段。

Return type:

listlist

Example

>>> from speechbrain.utils.EDER import merge_ssegs_same_emotion_adjacent
>>> lol=[['u1', 0.0, 7.0, 'a'],
... ['u1', 7.0, 9.0, 'a'],
... ['u1', 9.0, 11.0, 'n'],
... ['u1', 11.0, 13.0, 'n'],
... ['u1', 13.0, 15.0, 'n'],
... ['u1', 15.0, 16.0, 'a']]
>>> merge_ssegs_same_emotion_adjacent(lol)
[['u1', 0.0, 9.0, 'a'], ['u1', 9.0, 15.0, 'n'], ['u1', 15.0, 16.0, 'a']]
speechbrain.utils.EDER.reference_to_lol(id, duration, emotion)[source]

将引用更改为列表的列表

Parameters:
  • id (str) – 话语的id

  • duration (float) – 话语的持续时间

  • emotion (list of dicts) – 真实情感及其持续时间, 例如:[{‘emo’: ‘angry’, ‘start’: 1.016, ‘end’: 6.336}]

Returns:

lol – 每个列表结构为 [rec_id, sseg_start, sseg_end, spkr_id]。

Return type:

listlist

Example

>>> from speechbrain.utils.EDER import reference_to_lol
>>> id="u1"
>>> duration=8.0
>>> emotion=[{'emo': 'angry', 'start': 1.016, 'end': 6.336}]
>>> reference_to_lol(id, duration, emotion)
[['u1', 0, 1.016, 'n'], ['u1', 1.016, 6.336, 'a'], ['u1', 6.336, 8.0, 'n']]
speechbrain.utils.EDER.distribute_overlap(lol)[source]

将重叠的语音均匀分布在具有不同情绪的相邻片段中。

Parameters:

lol (list of list) – 每个列表结构为 [rec_id, sseg_start, sseg_end, spkr_id]。

Returns:

new_lol – 它包含了在不同情感ID的相邻段之间平均分配的重叠部分。

Return type:

listlist

Example

>>> from speechbrain.processing import diarization as diar
>>> lol = [['r1', 5.5, 9.0, 's1'],
... ['r1', 8.0, 11.0, 's2'],
... ['r1', 11.5, 13.0, 's2'],
... ['r1', 12.0, 15.0, 's1']]
>>> diar.distribute_overlap(lol)
[['r1', 5.5, 8.5, 's1'], ['r1', 8.5, 11.0, 's2'], ['r1', 11.5, 12.5, 's2'], ['r1', 12.5, 15.0, 's1']]