speechbrain.lobes.downsampling 模块

实现下采样方法的处理算法组合。

Authors
  • 萨拉赫·扎伊姆

摘要

类:

Conv1DDownsampler

使用学习的卷积进行一维卷积下采样

Downsampler

下采样技术的封装器

PoolingDownsampler

一维池化下采样(非学习型)

SignalDownsampler

信号下采样(抽取)

参考

class speechbrain.lobes.downsampling.Downsampler(*args, **kwargs)[source]

基础:Module

下采样技术的封装器

forward(x)[source]

下采样函数

Parameters:

x (tensor) – 形状为 [B,n_samples] 的语音样本,其中 B 是批次大小

Return type:

下采样输出。

class speechbrain.lobes.downsampling.SignalDownsampler(downsampling_factor, initial_sampling_rate)[source]

基础类:Downsampler

信号下采样(抽取)

Parameters:
  • downsampling_factor (int) – 下采样因子(即下采样前后的长度比)

  • initial_sampling_rate (int) – 输入音频的采样率

Example

>>> sd = SignalDownsampler(2,16000)
>>> a = torch.rand([8,28000])
>>> a = sd(a)
>>> print(a.shape)
torch.Size([8, 14000])
class speechbrain.lobes.downsampling.Conv1DDownsampler(downsampling_factor, kernel_size)[source]

基础类:Downsampler

使用学习卷积进行一维卷积下采样

Parameters:
  • downsampling_factor (int) – 下采样因子(即下采样前后的长度比)

  • kernel_size (int) – 一维滤波器的核大小(必须为奇数)

Example

>>> sd = Conv1DDownsampler(3,161)
>>> a = torch.rand([8,33000])
>>> a = sd(a)
>>> print(a.shape)
torch.Size([8, 10947])
class speechbrain.lobes.downsampling.PoolingDownsampler(downsampling_factor, kernel_size, padding=0, pool_type='avg')[source]

基础类:Downsampler

一维池化下采样(非学习的)

Parameters:
  • downsampling_factor (int) – 下采样因子(即下采样前后的长度比)

  • kernel_size (int) – 一维滤波器的核大小(必须为奇数)

  • padding (int) – 要应用的填充元素数量。

  • pool_type (string) – 池化方法,必须在 [“avg”,”max”] 范围内

Example

>>> sd = PoolingDownsampler(3,41)
>>> a = torch.rand([8,33000])
>>> a = sd(a)
>>> print(a.shape)
torch.Size([8, 10987])