speechbrain.lobes.downsampling 模块
实现下采样方法的处理算法组合。
- Authors
萨拉赫·扎伊姆
摘要
类:
使用学习的卷积进行一维卷积下采样 |
|
下采样技术的封装器 |
|
一维池化下采样(非学习型) |
|
信号下采样(抽取) |
参考
- class speechbrain.lobes.downsampling.SignalDownsampler(downsampling_factor, initial_sampling_rate)[source]
基础类:
Downsampler信号下采样(抽取)
Example
>>> sd = SignalDownsampler(2,16000) >>> a = torch.rand([8,28000]) >>> a = sd(a) >>> print(a.shape) torch.Size([8, 14000])
- class speechbrain.lobes.downsampling.Conv1DDownsampler(downsampling_factor, kernel_size)[source]
基础类:
Downsampler使用学习卷积进行一维卷积下采样
Example
>>> sd = Conv1DDownsampler(3,161) >>> a = torch.rand([8,33000]) >>> a = sd(a) >>> print(a.shape) torch.Size([8, 10947])
- class speechbrain.lobes.downsampling.PoolingDownsampler(downsampling_factor, kernel_size, padding=0, pool_type='avg')[source]
基础类:
Downsampler一维池化下采样(非学习的)
- Parameters:
Example
>>> sd = PoolingDownsampler(3,41) >>> a = torch.rand([8,33000]) >>> a = sd(a) >>> print(a.shape) torch.Size([8, 10987])