API文档¶
pyts Python软件包的完整API文档。
pyts.approximation: 近似算法¶
pyts.approximation 模块包含近似算法。
approximation.DiscreteFourierTransform([…]) |
Discrete Fourier Transform. |
approximation.MultipleCoefficientBinning([…]) |
Bin continuous data into intervals column-wise. |
approximation.PiecewiseAggregateApproximation([…]) |
Piecewise Aggregate Approximation. |
approximation.SymbolicAggregateApproximation([…]) |
Symbolic Aggregate approXimation. |
approximation.SymbolicFourierApproximation([…]) |
Symbolic Fourier Approximation. |
pyts.bag_of_words: 词袋算法¶
pyts.bag_of_words 模块包含词袋算法。
bag_of_words.BagOfWords([window_size, …]) |
Bag-of-words representation for time series. |
bag_of_words.WordExtractor([window_size, …]) |
Transform discretized time series into sequences of words. |
pyts.classification: 分类算法¶
pyts.classification 模块包含分类算法。
classification.BOSSVS([word_size, n_bins, …]) |
Bag-of-SFA Symbols in Vector Space. |
classification.KNeighborsClassifier([…]) |
k-nearest neighbors classifier. |
classification.LearningShapelets([…]) |
Learning Shapelets algorithm. |
classification.SAXVSM([window_size, …]) |
Classifier based on SAX-VSM representation and tf-idf statistics. |
classification.TimeSeriesForest([…]) |
A random forest classifier for time series. |
classification.TSBF([n_estimators, …]) |
Time Series Bag-of-Features algorithm. |
pyts.datasets: 数据集加载工具¶
pyts.datasets 模块提供了创建、加载和获取时间序列数据集的工具。
datasets.fetch_ucr_dataset(dataset[, …]) |
Fetch dataset from UCR TSC Archive by name. |
datasets.fetch_uea_dataset(dataset[, …]) |
Fetch dataset from UEA TSC Archive by name. |
datasets.load_basic_motions([return_X_y]) |
Load and return the Basic Motions dataset. |
datasets.load_coffee([return_X_y]) |
Load and return the Coffee dataset. |
datasets.load_gunpoint([return_X_y]) |
Load and return the GunPoint dataset. |
datasets.load_pig_central_venous_pressure([…]) |
Load and return the PigCVP dataset. |
datasets.make_cylinder_bell_funnel([…]) |
Make a Cylinder-Bell-Funnel dataset. |
datasets.ucr_dataset_info([dataset]) |
Information about the UCR datasets. |
datasets.ucr_dataset_list() |
List of available UCR datasets. |
datasets.uea_dataset_info([dataset]) |
Information about the UEA datasets. |
datasets.uea_dataset_list() |
List of available UEA datasets. |
pyts.decomposition: 分解算法¶
pyts.decomposition 模块包含分解算法。
decomposition.SingularSpectrumAnalysis([…]) |
Singular Spectrum Analysis. |
pyts.image: 图像处理算法¶
pyts.image 模块包含将时间序列转换为图像的算法。
image.GramianAngularField([image_size, …]) |
Gramian Angular Field. |
image.MarkovTransitionField([image_size, …]) |
Markov Transition Field. |
image.RecurrencePlot([dimension, …]) |
Recurrence Plot. |
pyts.metrics: 指标¶
pyts.metrics 模块包含各种度量指标。
metrics.boss(x, y) |
Return the BOSS distance between two arrays. |
metrics.dtw([x, y, dist, method, options, …]) |
Dynamic Time Warping (DTW) distance between two samples. |
metrics.itakura_parallelogram(n_timestamps_1) |
Compute the Itakura parallelogram. |
metrics.sakoe_chiba_band(n_timestamps_1[, …]) |
Compute the Sakoe-Chiba band. |
metrics.show_options([method, disp]) |
Show documentation for additional options of Dynamic Time Warping methods. |
pyts.multivariate: 多元时间序列工具¶
pyts.multivariate 模块包含处理多元时间序列的工具。
分类¶
multivariate.classification.MultivariateClassifier(…) |
Classifier for multivariate time series. |
图像¶
multivariate.image.JointRecurrencePlot([…]) |
Joint Recurrence Plot. |
转换¶
multivariate.transformation.MultivariateTransformer(…) |
Transformer for multivariate time series. |
multivariate.transformation.WEASELMUSE([…]) |
WEASEL+MUSE algorithm. |
实用工具¶
multivariate.utils.check_3d_array(X) |
Check that the input is a three-dimensional array. |
pyts.preprocessing: 预处理工具¶
pyts.preprocessing 模块包含预处理算法。
扩展性¶
preprocessing.MaxAbsScaler() |
Scale each sample by its maximum absolute value. |
preprocessing.MinMaxScaler([sample_range]) |
Transforms samples by scaling each sample to a given range. |
preprocessing.RobustScaler([with_centering, …]) |
Scale samples using statistics that are robust to outliers. |
preprocessing.StandardScaler([with_mean, …]) |
Standardize time series by removing mean and scaling to unit variance. |
转换¶
preprocessing.PowerTransformer([method, …]) |
Apply a power transform sample-wise to make data more Gaussian-like. |
preprocessing.QuantileTransformer([…]) |
Transform samples using quantiles information. |
离散化¶
preprocessing.KBinsDiscretizer([n_bins, …]) |
Bin continuous data into intervals sample-wise. |
缺失值填补¶
preprocessing.InterpolationImputer([…]) |
Impute missing values using interpolation. |
pyts.transformation: 转换算法¶
pyts.transformation 模块包含转换算法。
transformation.BagOfPatterns([window_size, …]) |
Bag-of-patterns representation for time series. |
transformation.BOSS([word_size, n_bins, …]) |
Bag of Symbolic Fourier Approximation Symbols. |
transformation.ROCKET([n_kernels, …]) |
RandOm Convolutional KErnel Transformation. |
transformation.ShapeletTransform([…]) |
Shapelet Transform Algorithm. |
transformation.WEASEL([word_size, n_bins, …]) |
Word ExtrAction for time SEries cLassification. |
pyts.utils: 实用工具¶
pyts.utils 模块包含实用工具。
utils.segmentation(ts_size, window_size[, …]) |
Compute the indices for Piecewise Agrgegate Approximation. |
utils.windowed_view(X, window_size[, …]) |
Return a windowed view of a 2D array. |