DummyClassifier#

class DummyClassifier(strategy='prior', random_state=None, constant=None)[源代码][源代码]#

DummyClassifier 进行预测时会忽略输入特征。

该分类器作为一个简单的基线,用于与其他更复杂的分类器进行比较。基线的具体行为通过 strategy 参数选择。

所有策略做出的预测都忽略了作为 fitpredict 方法的 X 参数传递的输入特征值。然而,这些预测通常依赖于在 fit 方法中传递的 y 参数中观察到的值。

sklearn.dummy.DummyClassifier 功能相同,内部调用。

参数:
策略{“most_frequent”, “prior”, “stratified”, “uniform”, “constant”}, default=”prior”

用于生成预测的策略。* “most_frequent”: predict 方法总是返回最

在传递给 fit 的观察到的 y 参数中,频繁的类别标签。predict_proba 方法返回匹配的独热编码向量。

  • “prior”: predict 方法总是返回在观察到的 y 参数传递给 fit 时最频繁的类别标签(类似于 “most_frequent”)。predict_proba 总是返回 y 的经验类别分布,也称为经验类别先验分布。

  • “分层”: predict_proba 方法从由经验类别先验概率参数化的多项分布中随机抽取独热编码向量。predict 方法返回在 predict_proba 的独热编码向量中概率为1的类别标签。因此,这两种方法的每一行采样都是独立且同分布的。

  • “uniform”: 从 y 中观察到的唯一类别的列表中均匀随机生成预测,即每个类别具有相等的概率。

  • “constant”: 总是预测一个由用户提供的常量标签。这对于评估非多数类的指标非常有用。

random_stateint, RandomState 实例或 None, 默认=None

strategy='stratified'strategy='uniform' 时,控制生成预测的随机性。传递一个整数以在多次函数调用中获得可重复的输出。参见 术语表

常量int 或 str 或形状为 (n_outputs,) 的类数组,默认=None

由“常数”策略预测的显式常数。此参数仅对“常数”策略有用。

属性:
is_fitted

是否已调用 fit

示例

>>> from sktime.classification.dummy import DummyClassifier
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")
>>> X_test, y_test = load_unit_test(split="test")
>>> classifier = DummyClassifier(strategy="prior")
>>> classifier.fit(X_train, y_train)
DummyClassifier()
>>> y_pred = classifier.predict(X_test)
>>> y_pred_proba = classifier.predict_proba(X_test)

方法

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造 Estimator 实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit(X, y)

拟合时间序列分类器到训练数据。

fit_predict(X, y[, cv, change_state])

拟合并预测X中序列的标签。

fit_predict_proba(X, y[, cv, change_state])

拟合并预测X中序列的标签概率。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值和动态标签覆盖。

get_tags()

从估计器类获取标签和动态标签覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict(X)

预测X中序列的标签。

predict_proba(X)

预测 X 中序列的标签概率。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(X, y)

在X上将预测标签与真实标签进行对比评分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

classmethod get_test_params(parameter_set='default')[源代码][源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值为”default”

要返回的测试参数集的名称,用于测试中。如果没有为某个值定义特殊参数,将返回 "default" 集。

返回:
参数字典或字典列表,默认={}

用于创建类的测试实例的参数。每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,则会引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,改变对象状态为动态标签在 self 中。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造 Estimator 实例。

参数:
参数集str, 默认值为”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称列表。

参数:
参数集str, 默认值为”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 的实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}

fit(X, y)[源代码]#

拟合时间序列分类器到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合估计器。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应于X中的实例索引,第1个索引(如果适用)对应于X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
self自我引用。
fit_predict(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应于X中的实例索引,第1个索引(如果适用)对应于X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_trainy_trainX_testcv 折叠中获得。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为False,将不会改变分类器的状态,即,fit/predict序列在副本上运行,self不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同。

fit_predict_proba(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签概率。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应于X中的实例索引,第1个索引(如果适用)对应于X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_trainy_trainX_testcv 折叠中获得。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为False,将不会改变分类器的状态,即,fit/predict序列在副本上运行,self不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred2D np.array 的 int 类型,形状为 [n_instances, n_classes]

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性中覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值的字典,包括组件的参数(= 值为 BaseObject 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:通过 get_param_names 获取此对象的所有参数,这些参数的值为此对象键的参数值,这些值总是与构造时传递的值相同。

  • 如果 deep=True,还包括组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname]componentname 的所有参数都以其值的形式显示为 paramname

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值和动态标签覆盖。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔值

当未找到标签时,是否会引发 ValueError

返回:
标签值任何

在 self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类获取标签和动态标签覆盖。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否有任何参数的值是 BaseObjects。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path) 实现
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出结果的第一个元素
返回:
反序列化自身,结果输出为 serial,来自 cls.save(None)
predict(X)[源代码]#

预测X中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同。

predict_proba(X)[源代码]#

预测 X 中序列的标签概率。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred2D np.array 的 int 类型,形状为 [n_instances, n_classes]

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

将类的实例重置为干净的初始化后状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,则返回内存中的序列化自身;如果 path 是一个文件位置,则将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 那么会在当前工作目录下生成一个 zip 文件 estimator.zip。path=”/home/stored/estimator” 那么会在 /home/stored/ 目录下存储一个 zip 文件 estimator.zip

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 是 None - 内存中序列化的自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(X, y) float[源代码]#

在X上将预测标签与真实标签进行对比评分。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以评分预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应于X中的实例索引,第1个索引(如果适用)对应于X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
浮点数,预测(X) 与 y 的准确度得分
set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如,spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的额外参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数, backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • dask: 任何 dask.compute 的有效键都可以传递,例如,scheduler

返回:
self自我引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单的估计器以及复合对象。参数键字符串 <component>__<parameter> 可以用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果唯一,__ 后缀可以别名为完整的字符串,在 get_params 键中。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样得到,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使那些没有 random_state 参数的估计器。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “copy” : estimator.random_state 被设置为输入 random_state

  • “保持” : estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新随机状态,

源自输入 random_state,并且通常与它不同

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。