BaggingClassifier#
- class BaggingClassifier(estimator, n_estimators=10, n_samples=1.0, n_features=1.0, bootstrap=True, bootstrap_features=False, random_state=None)[源代码][源代码]#
时间序列分类器的Bagging集成。
在实例子样本和/或变量子样本的数据集上拟合分类器的
n_estimators个克隆。在
predict_proba上,返回了概率预测的平均值。对于一个确定性分类器,这会导致predict的多数投票结果。估计器允许选择实例、变量的样本大小,以及采样是有放回还是无放回。
对
sklearn的BaggingClassifier进行直接泛化,以应用于时间序列分类任务。注意:如果
n_features=1,BaggingClassifier会将一个单变量分类器转变为一个多变量分类器,因为estimator看到的切片都是单变量的。这可以用来赋予单变量分类器多变量的能力。- 参数:
- 估计器sktime 分类器,BaseClassifier 的后代
在bagging估计器中使用的分类器
- n_estimatorsint, 默认=10
样本中用于装袋的估计器数量
- n_samplesint 或 float, 默认值=1.0
在
fit中从X抽取的实例数量来训练每个克隆。如果是整数,则表示确切的实例数量;如果是浮点数,则解释为分数,并由ceil向上取整。- n_featuresint 或 float, 默认值=1.0
从
fit中的X提取的特征/变量的数量来训练每个克隆。如果是整数,则表示确切的实例数量;如果是浮点数,则解释为分数,并按ceil取整。注意:如果 n_features=1,BaggingClassifier 会将单变量分类器转变为多变量分类器(因为estimator看到的切片都是单变量的)。- bootstrap布尔值,默认=True
样本/实例是按有放回(True)还是无放回(False)抽取
- bootstrap_features布尔值,默认=False
特征/变量是否以替换方式(True)或不替换方式(False)抽取
- random_stateint, RandomState 实例或 None, 可选 (默认=None)
如果为整数,
random_state是随机数生成器使用的种子;如果为RandomState实例,random_state是随机数生成器;如果为 None,随机数生成器是np.random使用的RandomState实例。
- 属性:
- estimators_sktime 分类器的列表
集成中拟合的
estimator分类器的克隆
示例
>>> from sktime.classification.ensemble import BaggingClassifier >>> from sktime.classification.kernel_based import RocketClassifier >>> from sktime.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train") >>> X_test, y_test = load_unit_test(split="test") >>> clf = BaggingClassifier( ... RocketClassifier(num_kernels=100), ... n_estimators=10, ... ) >>> clf.fit(X_train, y_train) BaggingClassifier(...) >>> y_pred = clf.predict(X_test)
方法
检查估计器是否已被拟合。
clone()获取一个具有相同超参数的对象副本。
clone_tags(estimator[, tag_names])从另一个估计器克隆标签作为动态覆盖。
create_test_instance([parameter_set])如果可能,构造 Estimator 实例。
create_test_instances_and_names([parameter_set])创建所有测试实例的列表及其名称的列表。
fit(X, y)拟合时间序列分类器到训练数据。
fit_predict(X, y[, cv, change_state])为X中的序列拟合并预测标签。
fit_predict_proba(X, y[, cv, change_state])拟合并预测X中序列的标签概率。
get_class_tag(tag_name[, tag_value_default])获取类标签的值。
从类及其所有父类中获取类标签。
获取 self 的配置标志
get_fitted_params([deep])获取拟合参数。
获取对象的参数默认值。
get_param_names([sort])获取对象的参数名称。
get_params([deep])获取此对象的参数值字典。
get_tag(tag_name[, tag_value_default, ...])从估计器类获取标签值和动态标签覆盖。
get_tags()从估计器类和动态标签覆盖中获取标签。
get_test_params([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path(serial)从文件位置加载对象。
load_from_serial(serial)从序列化的内存容器中加载对象。
predict(X)预测X中序列的标签。
预测X中序列的标签概率。
reset()将对象重置为初始化后的干净状态。
save([path, serialization_format])将序列化的自身保存到类字节对象或 (.zip) 文件中。
score(X, y)在 X 上将预测标签与真实标签进行比较。
set_config(**config_dict)将配置标志设置为给定值。
set_params(**params)设置此对象的参数。
set_random_state([random_state, deep, ...])设置 random_state 伪随机种子参数为 self。
set_tags(**tag_dict)将动态标签设置为给定值。
- classmethod get_test_params(parameter_set='default')[源代码][源代码]#
返回估计器的测试参数设置。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回
"default"集。对于分类器,应提供一组“default”参数用于一般测试,如果一般集不能产生适合比较的概率,则应提供一组“results_comparison”参数用于与先前记录的结果进行比较。
- 返回:
- 参数dict 或 dict 列表,默认={}
用于创建类的测试实例的参数。每个字典都是用于构造一个“有趣的”测试实例的参数,即
MyClass(**params)或MyClass(**params[i])创建一个有效的测试实例。create_test_instance使用params中的第一个(或唯一一个)字典。
- clone()[源代码]#
获取一个具有相同超参数的对象副本。
克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。
- 引发:
- 如果克隆不符合规范,由于
__init__存在错误,将引发 RuntimeError。
- 如果克隆不符合规范,由于
注释
如果成功,值等于
type(self)(**self.get_params(deep=False))。
- clone_tags(estimator, tag_names=None)[源代码]#
从另一个估计器克隆标签作为动态覆盖。
- 参数:
- 估计器继承自
BaseEstimator的估计器 - 标签名称str 或 str 列表, 默认 = None
要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names。
- 估计器继承自
- 返回:
- 自我
自我引用。
注释
通过在 tag_set 中设置来自估计器的标签值,改变对象状态,将其作为动态标签存储在 self 中。
- classmethod create_test_instance(parameter_set='default')[源代码]#
如果可能,构造 Estimator 实例。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- 实例使用默认参数的类实例
注释
get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。
- classmethod create_test_instances_and_names(parameter_set='default')[源代码]#
创建所有测试实例的列表及其名称的列表。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 实例列表
第 i 个实例是 cls(**cls.get_test_params()[i])
- 名称list of str, 与 objs 长度相同
第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i} 如果存在多个实例,否则为 {cls.__name__}
- fit(X, y)[源代码]#
拟合时间序列分类器到训练数据。
- 状态变化:
将状态更改为“已拟合”。
- 写给自己:
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以拟合估计器。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- ysktime 兼容的表格数据容器,表格科学类型
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame
- 返回:
- self自我引用。
- fit_predict(X, y, cv=None, change_state=True)[源代码]#
为X中的序列拟合并预测标签。
方便的方法来生成样本内预测和交叉验证的样本外预测。
- 如果 change_state=True,则写入自身:
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以拟合并预测标签。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- ysktime 兼容的表格数据容器,表格科学类型
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame
- cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
None : 预测是在样本内进行的,等同于
fit(X, y).predict(X)cv : 预测等同于
fit(X_train, y_train).predict(X_test),其中多个X_train、y_train、X_test从cv折叠中获得。返回的y是所有测试折叠预测的并集,cv测试折叠必须不相交。int : 等同于
cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中random_statex如果存在则从self获取,否则x=None
- change_statebool, 可选 (默认=True)
如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变
如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。
1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同
- fit_predict_proba(X, y, cv=None, change_state=True)[源代码]#
拟合并预测X中序列的标签概率。
方便的方法来生成样本内预测和交叉验证的样本外预测。
- 如果 change_state=True,则写入自身:
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以拟合并预测标签。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- ysktime 兼容的表格数据容器,表格科学类型
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame
- cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
None : 预测是在样本内进行的,等同于
fit(X, y).predict(X)cv : 预测等同于
fit(X_train, y_train).predict(X_test),其中多个X_train、y_train、X_test从cv折叠中获得。返回的y是所有测试折叠预测的并集,cv测试折叠必须不相交。int : 等同于
cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中random_statex如果存在则从self获取,否则x=None
- change_statebool, 可选 (默认=True)
如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变
如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int
预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的条目相同 条目是预测的类别概率,总和为 1
- classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#
获取类标签的值。
不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 参数:
- 标签名称str
标签值的名称。
- tag_value_default任何
如果未找到标签,则使用默认/回退值。
- 返回:
- 标签值
self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default。
- classmethod get_class_tags()[源代码]#
从类及其所有父类中获取类标签。
从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。
- 返回:
- collected_tagsdict
类标签名称:标签值对的字典。通过嵌套继承从 _tags 类属性中收集。
- get_config()[源代码]#
获取 self 的配置标志
- 返回:
- config_dictdict
配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性中收集,然后从 _config_dynamic 对象属性中覆盖和新标签。
- get_fitted_params(deep=True)[源代码]#
获取拟合参数。
- 状态要求:
需要状态为“已拟合”。
- 参数:
- 深度bool, 默认=True
是否返回组件的拟合参数。
如果为真,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。
- 返回:
- fitted_params带有字符串键的字典
拟合参数的字典,paramname : paramvalue 键值对包括:
always: 该对象的所有拟合参数,通过
get_param_names获取的值是该对象对应键的拟合参数值。如果
deep=True,还包含组件参数的键/值对,组件的参数被索引为[componentname]__[paramname],所有componentname的参数都以paramname及其值的形式出现。如果
deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname]等。
- classmethod get_param_defaults()[源代码]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。
- classmethod get_param_names(sort=True)[源代码]#
获取对象的参数名称。
- 参数:
- 排序bool, 默认=True
是否按字母顺序返回参数名称(True),或者按它们在类
__init__中出现的顺序返回(False)。
- 返回:
- param_names: list[str]
cls 的参数名称列表。如果
sort=False,则按它们在类__init__中出现的顺序排列。如果sort=True,则按字母顺序排列。
- get_params(deep=True)[源代码]#
获取此对象的参数值字典。
- 参数:
- 深度bool, 默认=True
是否返回组件的参数。
如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。
- 返回:
- 参数带有字符串键的字典
参数字典,paramname : paramvalue 键值对包括:
总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。
如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [组件名称]__[参数名称],所有 组件名称 的参数都以 参数名称 及其值的形式出现。
如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。
- get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#
从估计器类获取标签值和动态标签覆盖。
- 参数:
- 标签名称str
要检索的标签名称
- tag_value_default任意类型,可选;默认=None
如果未找到标签,则使用默认/回退值
- raise_error布尔值
当标签未找到时是否引发 ValueError
- 返回:
- 标签值任何
self 中 tag_name 标签的值。如果未找到,当 raise_error 为 True 时返回错误,否则返回 tag_value_default。
- 引发:
- 如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
- self.get_tags().keys()
- get_tags()[源代码]#
从估计器类和动态标签覆盖中获取标签。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。
- is_composite()[源代码]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
一个对象是否有任何参数的值是 BaseObjects。
- classmethod load_from_path(serial)[源代码]#
从文件位置加载对象。
- 参数:
- 串行ZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化自身,结果输出到
path,通过cls.save(path)实现
- 反序列化自身,结果输出到
- classmethod load_from_serial(serial)[源代码]#
从序列化的内存容器中加载对象。
- 参数:
- serial :
cls.save(None)输出的第一个元素输出结果的第一个元素
- serial :
- 返回:
- 反序列化自身,结果输出为
serial,来自cls.save(None)
- 反序列化自身,结果输出为
- predict(X)[源代码]#
预测X中序列的标签。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以预测标签。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- 返回:
- y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。
1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同
- predict_proba(X)[源代码]#
预测X中序列的标签概率。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以预测标签。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- 返回:
- y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int
预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的条目相同 条目是预测的类别概率,总和为 1
- reset()[源代码]#
将对象重置为初始化后的干净状态。
使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:
超参数 = __init__ 的参数
包含双下划线的对象属性,即字符串”__”
类和对象方法,以及类属性也不受影响。
- 返回:
- 自己
类的实例重置为干净的初始化后状态,但保留当前的超参数值。
注释
等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到类字节对象或 (.zip) 文件中。
行为:如果
path为 None,则返回内存中的序列化自身;如果path是一个文件位置,则将自身存储在该位置作为一个 zip 文件。保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。
- 参数:
- 路径无或文件位置(字符串或路径)
如果为 None,则将 self 保存到内存中的对象;如果为文件位置,则将 self 保存到该文件位置。如果:
path=”estimator” 则会在当前工作目录(cwd)生成一个名为
estimator.zip的压缩文件。path=”/home/stored/estimator” 则会在/home/stored/目录下存储一个名为estimator.zip的压缩文件。- serialization_format: str, default = “pickle”
用于序列化的模块。可用选项有 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。
- 返回:
- 如果
path是 None - 内存中序列化的自身 - 如果
path是文件位置 - 带有文件引用的 ZipFile
- 如果
- score(X, y) float[源代码]#
在 X 上将预测标签与真实标签进行比较。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型
时间序列以评分预测标签。
可以是任何
Panel类型 的 科学类型 ,例如:pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引
numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panelmtype
有关mtypes的列表,请参见
datatypes.SCITYPE_REGISTER有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考。
- ysktime 兼容的表格数据容器,表格科学类型
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame
- 返回:
- 浮点数,预测(X)与y的准确度得分
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义如下所列:
- 显示str, “diagram” (默认), 或 “text”
jupyter 内核如何显示 self 的实例
“diagram” = html 盒子图表示
“text” = 字符串打印输出
- print_changed_onlybool, 默认=True
是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。
- 警告str, “on”(默认),或 “off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 不会从 sktime 引发警告
- 后端:并行str, 可选, 默认=”None”
在广播/矢量化时用于并行化的后端,是以下之一
“None”: 按顺序执行循环,简单的列表推导
“loky”、“multiprocessing” 和 “threading”:使用
joblib.Parallel“joblib”:自定义和第三方
joblib后端,例如spark“dask”: 使用
dask,需要在环境中安装dask包
- 后端:并行:参数dict, 可选, 默认={} (未传递参数)
传递给并行化后端的额外参数作为配置。有效键取决于
backend:parallel的值:“None”: 没有额外参数,
backend_params被忽略“loky”, “multiprocessing” 和 “threading”: 默认的
joblib后端 任何有效的joblib.Parallel键都可以在这里传递,例如n_jobs,除了backend直接由backend控制。如果未传递n_jobs,它将默认为-1,其他参数将默认为joblib的默认值。“joblib”: 自定义和第三方
joblib后端,例如spark。任何joblib.Parallel的有效键都可以在这里传递,例如n_jobs,在这种情况下,backend必须作为backend_params的一个键传递。如果未传递n_jobs,它将默认为-1,其他参数将默认为joblib的默认值。“dask”: 任何
dask.compute的有效键都可以传递,例如scheduler
- 返回:
- self自我引用。
注释
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[源代码]#
设置此对象的参数。
该方法适用于简单估计器以及复合对象。参数键字符串
<component>__<parameter>可用于复合对象,即包含其他对象的对象,以访问组件<component>中的<parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带<component>__的字符串<parameter>。- 参数:
- **参数dict
BaseObject 参数,键必须是
<component>__<parameter>字符串。如果唯一存在于 get_params 键中,__ 后缀可以别名为完整字符串。
- 返回:
- self引用自身(在参数设置之后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
设置 random_state 伪随机种子参数为 self。
通过
estimator.get_params查找名为random_state的参数,并通过set_params将其设置为由random_state派生的整数。这些整数通过sample_dependent_seed的链式哈希采样得到,并保证种子随机生成器的伪随机独立性。根据
self_policy应用于estimator中的random_state参数,并且仅当deep=True时应用于剩余的组件估计器。注意:即使
self没有random_state,或者没有任何组件有random_state参数,也会调用set_params。因此,set_random_state将重置任何scikit-base估计器,即使那些没有random_state参数的估计器。- 参数:
- random_stateint, RandomState 实例或 None, 默认=None
伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。
- 深度bool, 默认=True
是否在子估计器中设置随机状态。如果为 False,则仅设置
self的random_state参数(如果存在)。如果为 True,则还会在子估计器中设置random_state参数。- self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
“复制”:
estimator.random_state被设置为输入的random_state“保持” :
estimator.random_state保持不变“new” :
estimator.random_state被设置为一个新的随机状态,
源自输入
random_state,并且通常与它不同。
- 返回:
- self自我引用